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This paper is concerned with non-optimal rates of convergence for two processes
[A:] and [B:], which satisfy &A:&=O(1), B: A/AB:=I&A: , &AA:&=O(e(:)),
where A is a closed operator and e(:) � 0. Under suitable conditions, we describe,
in terms of K-functionals, those x (resp. y) for which the non-optimal convergence
rate of [A:x] (resp. [B: y]) is of the order O( f (:)), where f is a function satisfying
e(:)� f (:) � 0. In case that f (:)�e(:) � �, the sharpness of the non-optimal rate
of [A:x] is equivalent to that A has non-closed range. The result provides a unified
approach to dealing with non-optimal rates for many particular mean ergodic
theorems and for various methods of solving the equation Ax= y. We discuss in
particular applications to :-times integrated semigroups, n-times integrated cosine
functions, and tensor product semigroups. � 1998 Academic Press

1. INTRODUCTION

Let X be a Banach space and B(X) be the Banach algebra of all bounded
linear operators on X. Let [T (t); t�0]/B(X ) be a uniformly bounded
C0 -semigroup with infinitesimal generator A. It is well know (see, e.g., [11,
p. 688]) that the Cesa� ro mean C(t) :=t&1 � t

0 T (s) ds of T ( } ) converges
strongly on X0=N(A)�R(A) to the projection P which has range N(A)
and null space R(A). It was proved by Butzer and Dickmeis [3] that con-
cerning optimal convergence one has

&C(t) x&Px&=O(t&1) [resp. o(t&1)] (t � �)

� x # [D(B0)]t

X0
[resp. x # N(A)], (1)

where B0=0�B1 with B1 the inverse operator of A1 :=A |R(A) , and
[D(B0)]t

X0
is the completion of D(B0)(=N(A)�R(A1)) relative to X0 .
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Concerning the non-optimal convergence rates, one has that for 0<;�1

&C(t) x&Px&=O(t&;) (t � �)

� K(t&1, x, X0 , D(B0), & }&B0
)=O(t&;) (t � �),

the latter being Peetre's K-functional, i.e.,

K(t&1, x, X0 , D(B0), & }&B0
) :=inf[&x& y&+t&1 &y&B0

; y # D(B0)].

In [17] it is proved that if B0 is unbounded (as observed in [22], this con-
dition is equivalent to that R(A) is not closed), then for each 0<;�1
there exists x; # X0 such that

&C(t) x;&Px;& {=O(t&;)
{o(t&;)

(t � �). (3)

Thus, if R(A) is not closed, then for any 0<:<;�1 there exists an
x# # X0 (with :<#<;) such that &C(t) x#&Px# &=o(t&:) but {O(t&;).
In particular, we have O(t&1)=[D(B0)]t

X0
/({) o(t&:)/({) o(1)=X0 .

It is known that if R(A) is closed, then not only O(t&1)=N(A)�R(A)=
X0=X, but also &C(t)&P&=O(t&1) (t � �).

The aim of this paper is to present an abstract framework for non-
optimal rates of convergence for ergodic limits and for approximate solu-
tions of linear functional equations, and to apply the general results to
various particular examples. For that purpose we consider the non-optimal
convergence of the following processes.

Let A : D(A)/X � X be a closed linear operator, and let [A:] and
[B:] be two nets in B(X ) satisfying:

(C1) &A:&�M for all :;

(C2) R(B:)/D(A) and B: A/AB:=I&A: for all :;

(C3) R(A:)/D(A) for all :, and &AA: &=O(e(:));

(C4) B:*x*=.(:) x* for all x* # R(A)=, and |.(:)| � �;

(C5) &A:x&=O( f (:)) (resp. o( f (:))) implies &B: x&=O( f (:)�e(:))
(resp. o( f (:)�e(:)),

where e and f are positive functions satisfying 0�e(:)� f (:) � 0.

Note that (C2) implies A:A/AA: for all :. The functions e(:) and f (:)
are to act as estimators of the convergence rates of [A:x] and [B: y],
approximating respectively the ergodic limit and the solution of Ax= y, in
practical applications. The assumptions (C4) and (C5) play key roles in the
proof of our theorems and prevail among practical examples.
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Strong ergodic theorems, uniform ergodic theorems, and saturation
theorems for this general framework have been discussed in [20, 22, 23]
respectively, and they subsume many particular results for various systems
of operators. For convenience of reference, these general theorems will be
quoted in Section 2. The main results, to be stated and proved in Section 3,
describe non-optimal rates of convergence of A: and B: in terms of the
convergence order of K-functionals, and justify the sharpness of non-
optimal rates of convergence. Applications to particular examples, such as
:-times integrated semigroups, n-times integrated cosine functions, and
tensor product semigroups, will then be discussed in Section 4.

2. PRELIMINARY RESULTS

Let P and B1 be the operators defined respectively by

{
D(P) :=[x # X; lim

:
A:x exists];

Px :=lim
:

A:x for x # D(P),

and

{
D(B1) :=[ y # X; lim

:
B: y exists];

B1x :=lim
:

B: y for y # D(B1).

The following strong mean ergodic theorem for the systems [A:] and
[B:] is proved in [20, Theorem 1.1, Corollary 1.4, and Remark 1.7].

Theorem A (Strong Ergodic Theorem). Under conditions (C1)�(C4)
the following are true.

(i) P is a bounded linear projection with range R(P)=N(A), null
space N(P)=R(A), and domain D(P)=N(A)�R(A)=[x # X; [A:x] has
a weak cluster point].

(ii) B1 is the inverse operator A&1
1 of the restriction A1 :=A | R(A) of

A to R(A); it has range R(B1)=D(A1)=D(A) & R(A) and domain
D(B1)=R(A1)=A(D(A) & R(A)). Moreover, for each y # D(B1), B1 y is the
unique solution of the functional equation Ax= y in R(A).

(iii) [A:] is strongly ergodic, i.e., D(P)=X, if and only if N(A)
separates R(A)=, if and only if [A: x] has a weak cluster point for each
x # X. In this case, we have R(A)=D(B1)=A(D(A) & R(A)). These are true
in particular when X is reflexive.

287NON-OPTIMAL RATES OF ERGODIC LIMITS



File: DISTL2 318604 . By:AK . Date:02:07:98 . Time:13:19 LOP8M. V8.B. Page 01:01
Codes: 3073 Signs: 1944 . Length: 45 pic 0 pts, 190 mm

Let X1 :=R(A) and X0 :=D(P)=N(A)�X1 . Since the operator
B1 : D(B1)/X1 � X1 is closed, its domain D(B1) (=R(A1)) is a Banach
space with respect to the norm &x&B1

:=&x&+&B1x&. The completion of
D(B1) relative to X1 , denoted by [D(B1)]t

X1
(=[R(A1)]t

X1
), is the set of all

those y # X1 for which there exist a sequence [ yn]/D(B) and a constant
K>0 such that &yn&B�K for all n and &yn& y& � 0. Let B0 : D(B0)/
X0 � X0 be the operator B0 :=0�B1 . Then its domain D(B0)
(=N(A)�D(B1)=N(A)�A(D(A) & R(A))) is a Banach space with norm
&x&B0

:=&x&+&B0x&, and [D(B0)]t

X0
=N(A)�[D(B1)]t

X1
.

The following lemma is an immediate consequence of the above defini-
tion of the operator B0 .

Lemma. Let X0 , A, B0 , and P be as defined previously. Then

(1) PB0x=0 for x # D(B0), and B0Px=0 for x # X0 .

(2) AB0x=x&Px for x # D(B0), and B0Ax=x&Px for x # N(A)�
(D(A) & R(A)).

Concerning optimal convergence, the following theorem from [23]
characterizes the Favard (or saturation) classes for the two processes [A:]
and [B:].

Theorem B (Saturation Theorem). Under conditions (C1)�(C5) with
f (:)=e(:), the following are true.

(i) For x # X0 one has &A:x&Px&=O(e(:)) (resp. o(e(:))) if and
only if x # [D(B0)]t

X0
(resp. x # N(A)).

(ii) For x # X one has &B:x&=O(1) (resp. o(1)) if and only if x #
[D(B1)]t

X1
(resp. x=0).

(iii) For y # D(B1)=R(A1) one has &B: y&B1 y&=O(e(:)) (resp.
o(e(:))) if and only if y # A(D(A) & [D(B1)]t

A1
) (resp. y=0).

The next theorem from [22] will be needed in discussing the sharpness
of non-optimal rates. One can see that the original assumption that A is
densely defined is unnecessary.

Theorem C (Uniform Ergodic Theorem). Under conditions (C1)�(C3),
we have D(P)=X and &A:&P& � 0 if and only if &B: |R(A) &=O(1), if and
only if B1 is bounded and &B: |R(A)&B1& � 0, if and only if R(A) (or R(A1))
is closed. Moreover, the convergence of these limits has order O(e(:)).

Next, for easier application to Theorem 2 we formulate the following
version of the condensation theorem of Davydov [10, Theorem 1].
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Theorem D. Let [ p:] be a net of continuous seminorms on a Banach
space X satisfying the conditions:

(a) lim: &p:&=�, where &p:& :=sup[ p:(x); x # X, &x&�1];

(b) the set [x # X; lim: p:(x)=0] is dense in X.

Then there exists an element x0 # X such that sup: p:(x0)�1 and
lim: p:(x0)=1.

3. MAIN RESULTS

In this section we prove two main theorems of this paper; the first one
shows that the non-optimal convergence rates of ergodic limits and
approximate solutions are the same as those of the corresponding K-func-
tionals; the second one shows the sharpness of the non-optimal rates in the
case that R(A) is not closed.

Theorem 1. Under conditions (C1)�(C5) the following statements hold.

(i) For x # X0=N(A)�R(A), one has &A: x&Px&=O( f (:)) if and
only if K(e(:), x, X0 , D(B0), & }&B0

)=O( f (:)).

(ii) For x # R(A), one has &A:x&=O( f (:)) if and only if K(e(:), x,
X1 , D(B1), & }&B1

)=O( f (:)).

(iii) For y # D(B1)=R(A1) one has &B: y&B1 y&=O( f (:)) if and
only if K(e(:), B1 y, X1 , D(B1), & }&B1

)=O( f (:)).

Since K-functionals are saturated (see [2, p. 15]), i.e., K(e(:), x, X0 ,
D(B0), & }&B0

)=O(e(:)) if and only if x # [D(B0)]t

X0
, and K(e(:), y, X1 ,

D(B1), & }&B1
)=O(e(:)) if and only if y # [D(B1)]t

X1
, Theorem B also

follows from Theorem 1.

Proof of Theorem 1. First we show the sufficiency part of (i). Using
(C1), (C3), and the Lemma in Section 2 we have for any fixed x # X0 and
arbitrary y # D(B0)

&A:x&Px&�&A: x&A: y&+&A: y&Py&+&Py&Px&

�(&A:&+&P&) &x& y&+&A:( y&Py)&

�2M &x& y&+&A:AB0 y&

�2M &x& y&+ke(:) &B0 y&

�(2M+k)[&x& y&+e(:) &y&B0
].

Hence &A: x&Px&�(2M+k) K(e(:), x, X0 , D(B0), & }&B0
)=O( f (:)).
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The necessity. For x # X0 let x:=x+Px&A: x. Using (C2) and the fact
that R(P)=N(A) we can write

x:=Px+AB: x=Px+AB:x&B: APx=Px+AB:(x&Px).

Because (C2) implies B: R(A)/D(A) & R(A) and x&Px lies in R(A), we
have B:(x&Px) # D(A) & R(A) and x: # N(A)�A(D(A) & R(A)=D(B0).
Then, applying B0 and using the Lemma in Section 2 we obtain B0x:=
B0Px+B0 AB:(x&Px)=B:(x&Px). Since &A:(x&Px)&=&A:x&Px&=
O( f (:)), (C5) implies that &B0 x: &=&B:(x&Px)&=O( f (:)�e(:)). Hence

K(e(:), x, X0 , D(B0), & }&B0
)

�&x&x:&+e(:) &x:&B0

�&A:x&Px&+e(:)[&x+Px&A:x&+&B0x:&]

�O( f (:))+e(:) _(1+2M) &x&+O \ f (:)
e(:)+&=O( f (:)).

Part (ii) can be proved by slightly modifying the above proof of (i), and
(iii) follows from (ii) because we have

B: y&B1 y=B: AB1 y&B1 y=(B: A&I ) B1 y=&A: B1 y

for y # D(B1).
It follows from (i) of Theorem B that &A: y&=O(e(:)) but {o(e(:)) for

every nonzero element y of [D(B1)]t

X1
=[A(D(A) & R(A)]t

X1
. Hence, when

A{0, &A: y&=O(e(:)) is sharp everywhere on [D(B1)]t

X1
"[0]. The

following theorem characterizes the sharpness of &A: y&=O( f (:)) for f
satisfying f (:)�e(:) � �.

Theorem 2. Suppose that A, [A:], and [B:] satisfy conditions (C1)�(C5),
with f (:)�e(:) � �. Then R(A) is not closed if and only if there exists an
element yf # X1=R(A) such that

&A: yf& {=O( f (:));
{o( f (:)).

(4)

Proof. The sufficiency. If R(A) is closed, then by Theorem C we have
D(P)=X and &A:&P&=O(e(:)), so that &A:&P&=o( f (:)). Hence there
does not exist any yf in X1 that satisfies (4). To reason in another way, we
see from the closedness of R(A) and D(P)=X that X1=R(A)=D(B1)=
[D(B1)]t

X1
(Theorem A(iii)) so that &A: y&=O(e(:)) (Theorem B(i)) and

hence &A: y&=o( f (:)) for all y # X1 . This leads to the same conclusion
that no element in X1 satisfies (4) when R(A) is closed.
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The necessity. Consider the seminorm p: on X1 defined by p:(x)=
&A:x&�f (:), x # X1 . We have &p:&=&A: |X1

&� f (:)�&A:&�f (:). Since R(A)
is not closed, it follows from Theorem C that lim: &A:&P&>0, so that
lim: &A: |X1

&>0. Hence, with X replaced by X1 , condition (a) of
Theorem D is satisfied. To show (b), we see from (i) of Theorem B and the
assumption of the theorem that p:(x)=O(e(:))� f (:)=o(1) for all x # D(B1).
Since application of Theorem A to the triplet [A1 , [A: |X1

], [B: | X1
]]

implies that D(B1)=R(A1)=N(P |X1
)=X1 , condition (b) of Theorem D is

verified. It follows that there exists yf # X1 such that sup p:( yf)�1 and
lim: p:( yf)=1. That means that yf satisfies (4).

Remarks. (i) R(A) is not closed if and only if there is a yf # X1=R(A)
such that for any x # N(A) the element xf :=x+ yf satisfies

&A:xf&Pxf & {=O( f (:));
{o( f (:)).

(5)

(ii) When R(A) is closed, Theorem C with theorem A(iii) also shows
that D(B1)=R(A), B1 is bounded, and &B: |D(B1)&B1 &=O(e(:)), so that
&B: | D(B1)&B1&=o( f (:)). Hence, in this case, there does not exist any zf in
D(B1) satisfying

&B:zf&B1zf & {=O( f (:));
{o( f (:)).

(6)

When R(A) is not closed, it is unknown whether or not there exists an
element zf # D(B1) such that (6) holds.

(iii) Condition (C4) is needed to show that the existence of the limit
lim: B: y for an element y # X implies y # R(A) (cf. [20, Theorem 1.3]). If
we require in the definition of the operator B1 that D(B1) :=[ y # R(A);
lim: B: y exists], then all the general results are still true without condition
(C4).

4. APPLICATIONS

By applying (i) and (ii) of Theorem 1 to discrete semigroups and
C0 -semigroups, one can easily deduce Butzer and Westphal's result in [7,
8], and Butzer and Dickmeis' result in [3], i.e., formulas (1) and (2), and
by applying Theorem 2 one can deduce the result of Nasri-Roudsari,
Nessel, and Zeler [17], i.e., formula (3). One can also apply Theorems 1
and 2 to deduce the particular result in [9] for resolvent families. These
applications can be found in [26].
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In this section we shall demonstrate applications to the Abelian ergodic
theorem with rates, :-times integrated semigroups, n-times integrated
cosine functions, and tensor product semigroups.

4.1. Abelian Ergodic Theorem with Rates. Let A be a closed operator
such that 0 # \(A) and such that &*(*&A)&1&=O(1) (* � 0, * # \(A)). Set
A* :=*(*&A)&1 and B* := &(*&A)&1, * # \(A). Clearly [A*] and [B*]
satisfy conditions (C1)�(C5), with e(*)=|*|, f (*)=|*|;, 0<;�1, and
.(*)=*&1 � � as * � 0 (cf. [20, 23]). Then the following known result
(see [3, 6]) follows from Theorems 1 and 2 immediately.

Theorem 3. Let A be a closed operator such that 0 # \(A) and
&*(*&A)&1&=O(1) (* � 0). Then the following are true for 0<;�1:

(i) For x # X0 , one has &*(*&A)&1 x&Px&=O( |*|;) (* � 0) if and
only if K( |*|, x, X0 , D(B0), & }&B0

)=O( |*|;) (* � 0).

(ii) For y # D(B1)=R(A1), one has &(A&*)&1 y&B1 y&=O( |*|;)
(* � 0) if and only if K( |*|, B1 y, X1 , D(B1), & }&B1

)=O( |*|;) (* � 0).

(iii) R(A) is not closed if and only if for each (some) 0<;<1 there
exists an element yB # R(A) such that

&*(*&A)&1 y;& {=O( |*|;)
{o( |*| ;)

(* � 0).

4.2. :-Times Integrated Semigroups. For a positive number : a family
[T (t); t�0] in B(X ) is called an :-times integrated semigroup if

(S1) T ( } ) is strongly continuous on [0, �) and T (0)=0;

(S2) T(t) T(s)=1�1 (:)(�t+s
0 &�t

0&�s
0)(t+s&r):&1 T(r) dr for s, t�0.

A C0 -semigroup is called a 0-times integrated semigroup.
N-times integrated semigroups were introduced in [1], and fractionally

integrated semigroups have been studied in [14�16].
If T ( } ) is nondegenerate in the sense that x=0 whenever T (t) x=0 for

all t>0, then there exists uniquely a closed (but not necessarily densely
defined) operator A such that x # D(A) and Ax= y if and only if T (t) x=
�t

0 T (s) y ds+(t:�1 (:+1)) x for all t�0. This operator A is called the
generator of T ( } ). It satisfies T (t) D(A)/D(A) and T (t) A/AT (t), and

|
t

0
T (x) x ds # D(A) and

A |
t

0
T (s) x ds=T (t) x&

t:

1 (:+1)
x, x # X, t�0. (7)
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If T ( } ) is exponentially bounded, i.e., there are M�0 and w # R such that
&T (t)&�Mewt for all t�0, then one has

(w, �)/\(A) and (*&A)&1 x=|
�

0
*:e&*tT (t) x dt (8)

for x # X and *>w.
Let At and Bt be operators defined respectively by

At d :=1 (:+2) t&:&1 |
t

0
T (s) x ds

and

Bt x :=&1 (:+2) t&:&1 |
t

0
|

s

0
T (u) x du ds

for x # X and t>0. In [21�23] we have considered strong convergence,
uniform convergence, and a saturation theorem for At and Bt as t � � (for
the case that : is a natural number). At present, their non-optimal rates of
convergence are to be deduced from Theorems 1 and 2.

Assume that T ( } ) satisfies &T (t)&=O(t:) (t � �). Then by (7) and the
fact that A is closed, we can easily see that [At] and [Bt] satisfy condi-
tions (C1)�(C4), with e(t)=t&1 and .(t)=&t�(:+2). One can also easily
verify that &At y&=O(t&;) (resp. o(t&;)) implies &Bt y&=O(t&;+1) (resp.
o(t&;+1)). That is, (C5), with f (t)=t&;, 0<;�1, is satisfied. Hence the
theorems in Section 3 can be employed to obtain non-optimal rates for
Cesa� ro ergodic limits. On the other hand, the assumption &T (t)&=O(t:)
(t � �) also implies that (0, �)/\(A) and &*(*&A)&1&=O(1) (* � 0+)
so that Theorem 3 applies. Therefore we obtain the next theorem.

Theorem 4. Let [T (t); t�0] be a nondegenerate :-times integrated
semigroup with generator A, and suppose &T (t)&�Mt: for all t�0.

(i) The mapping P : x � limt � � 1 (:+2) t&:&1 �t
0 T (x) x ds is a

bounded linear projection with R(P)=N(A), N(P)=R(A), and D(P)=
N(A)�R(A). For 0<;�1 and x # D(P), we have &1 (:+2) t&:&1 � t

0 T (s)
x ds&Px&=O(t&;) (t � �) if and only if &*(*&A)&1 x&Px&=O(*;)
(* � 0+), if and only if K(*, x, X0 , D(B0), & }&B0

)=O(*;) (* � 0+). More-
over, in case ;=1, these conditions are equivalent to x # [D(B0)]t

X0
.

(ii) The mapping B1 : y � &limt � � 1 (:+2) t&:&1 �t
0 �s

0 T(u) x du ds
is the inverse operator A&1

1 of the restriction A1 :=A | R(A) of A to R(A);
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it has range R(B1)=D(A) & R(A), and domain D(B1)=A(D(A) & R(A)).
For each y # A(D(A) & R(A)), B1 y is the unique solution of the func-
tional equation Ax= y in R(A). For 0<;�1 we have &1 (:+2) t&:&1_
�t

0 �s
0 T (u) y du ds+A&1

1 y&=O(t&;) (t � �) if and only if &(*&A)&1 y+
A&1

1 y&=O(*;) (* � 0+), if and only if K(*, B1 y, X1 , D(B1), & }&B1
)=

O(*;) (* � 0+). Moreover, in case ;=1, these conditions are equivalent to
y # [D(B1)]t

X1
.

(iii) R(A) is not closed if and only if for every (some) 0<;<1 there
are y; , y$; # R(A) such that

&1 (:+2) t&:&1 |
t

0
T (s) y; ds& {=O(t&;)

{o(t&;)
(t � �),

&*(*&A)&1 y$;& {=O(*;)
{o(*;)

(* � 0+).

Remarks. When :=0, (i) reduces to Butzer and Dickmeis' result [3]
on C0-semigroups, and (iii) becomes the result in [17]. When :>0 is a
natural number, the assertions for the case ;=1 in (i) and (ii) were proved
in [23, Theorem 5].

4.3. N-Times Integrated Cosine Operator Functions. A strongly contin-
uous family [C(t); t�0] of bounded linear operators on X is called an
n-times integrated cosine function (n�1) if C(0)=0 and

2C(t) C(s) x=
1

(n&1)! {(&1)n |
|s&t|

0
( |s&t|&u)n&1 C(u) x du

+_|
s+t

0
&|

t

0
&|

s

0 & (t+s&u)n&1 C(u) x du

+|
t

0
(s&t+u)n&1 C(u) x du+|

s

0
(t&s+u)n&1 C(u) x du=

for all x # X and s, t>0. It is called a (0-times integrated) cosine function
(see [27]) if

C(0)=I and 2C(t) C(s)=C(t+s)+C(t&s) for t�s�0.

C( } ) is said to be nondegenerate if C(t) x=0 for all t>0 implies x=0.
In this case, there exists a closed operator A which is uniquely defined as

x # D(A) and

Ax= y � C(t) x&
tn

n!
x=|

t

0
(t&u) C(u) y du for t�0.
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This operator A is called the generator of C( } ). It is known that
C(t) D(A)/D(A), C(t) A/AC(t), and �t

0 (t&u) C(u) x du # D(A) and

A |
t

0
(t&u) C(u) x du=C(t) x&

tn

n!
x for x # X and t�0. (9)

In case that C( } ) is exponentially bounded, i.e., &C(t)&�Mewt, t�0, one
has

(w2, �)/\(A) and (*2&A)&1 x=|
�

0
*n&1e&*tC(t) x dt (10)

for x # X and *>w. For properties of n-times integrated cosine functions
see [24]. For 0-times integrated cosine functions see [12, 27].

Let operators At and Bt be defined respectively by

At :=
(n+2)!

tn+2 |
t

0
|

s

0
C(u) du ds

and

Bt := &
(n+2)!

tn+2 |
t

0
|

s

0
|

u

0
|

v

0
C(w) dw dv du ds.

Assume that C( } ) satisfies &C(t)&=O(tn) (t � �). Then by (9) and the
fact that A is closed, we can easily see that [At] and [Bt] satisfy condi-
tions (C1)�(C4), with e(t)=t&2 and .(t)=&t2�(n+3)(n+4). One can
also easily verify that &At y&=O(t&2;) (resp. o(t&2;)) implies &Bt y&=
O(t&2;+2) (resp. o(t&2;+2)). That is, (C5), with f (t)=t&2;, 0<;�1, is
satisfied. Hence the theorems in Section 3 can be employed to obtain non-
optimal rates for Cesa� ro ergodic limits. On the other hand, the assumption
&C(t)&=O(tn) (t � �) also implies that (0, �)/\(A) and &*(*&A)&1&=
O(1) (* � 0+) so that Theorem 3 applies. Therefore we obtain the next
theorem.

Theorem 5. Let [C(t); t�0] be a nondegenerate n-times integrated
cosine function with generator A, and suppose &C(t)&�Mtn for all t�0. We
have:

(i) The mapping P : x � limt � � At x is a bounded linear projection
with R(P)=N(A), N(P)=R(A), and D(P)=N(A)�R(A). For 0<;�1
and x # N(A)�R(A), we have &Atx&Px&=O(t&2;) (t � �) if and only if
&*(*&A)&1 x&Px&=O(*;) (* � 0+), if and only if K(*, x, X0 , D(B0),
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& }&B0
)=O(*;) (* � 0+). Moreover, in case ;=1, these conditions are equiv-

alent to x # [D(B0)]t

X0
.

(ii) The mapping B1 : y � limt � � Btx is the inverse operator A&1
1 of

the restriction A1 :=A | R(A) of A to R(A); it has range R(B1)=D(A) &
R(A), and domain D(B1)=A(D(A) & R(A)). For each y # A(D(A) & R(A)),
B1 y is the unique solution of the functional equation Ax= y in R(A). For
0<;�1 and y # A(D(A) & R(A)) on has &Bt y&A&1

1 y&=O(t&2;) (t � �)
if and only if &(*&A)&1 y+A&1

1 y&=O(*;) (* � 0+), if and only if
K(*, B1 y, X1 , D(B1), & }&B1

)=O(*;) (* � 0+). Moreover, in case ;=1,
these conditions are equivalent to y # [D(B1)]t

X1
.

(iii) R(A) is not closed if and only if for every (some) 0<;<1 there
are y; , y$; # R(A) such that

&At y;& {&O(t&2;)
{o(t&2;)

(t � �)

and

&*(*&A)&1 y$;& {=O(*;)
{o(*;)

(* � 0+).

Remarks. The strong mean ergodic theorem for (C, 2)-means of C( } )
for the case n=0 and the part in (i) about non-optimal rates are proved
in [18] (see also [20] for the strong ergodic theorem), and the assertions
in (i) and (ii) about optimal rates are proved in [23]. Parts (i) and (iii) for
the case n=0 can also be found in [4�6].

4.4. Tensor Product Semigroups. For i=1, 2, let Xi be a Banach space
and [Ti (t); t�0]/B(Xi) be a (C0)-semigroup with the infinitesimal gener-
ator Ai . Suppose &Ti (t)&�Miewit, t�0, i=1, 2. The family [S(t); t�0] of
operators on B(X2 , X1), defined by S(t) E=T1(t) ET2(t)(E # B(X2 , X1)), is
a semigroup in the algebra B(B(X2 , X1)), and is called the tensor product
semigroup of T1( } ) and T2( } ). The generator 2 of S( } ), defined by the
strong operator limit 2E :=so-limt � 0+ t&1(S(t) E&E), is closed relative to
the weak operator topology and densely defined relative to the strong
operator topology (see [19, Proposition 3.3]); it is precisely the operator
which has as its domain the set of all those E # B(X2 , X1) for which
ED(A2)/D(A1) and A1E+EA2 is bounded on D(A2), and sends each
such E to A1E+EA2 . For *>w1+w2 , *&2 is invertible and

(*&2)&1 Ex=|
�

0
e&* t(S(t) E) x dt (E # B(X2 , X1), x # X2).

If w1+w2�0, then (0, �)/\(2) and &*(*&2)&1&�M1M2 for all *>0,
so that Theorem 3 can be applied to 2.
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For t>0 define the operators At and Bt by

(AtE) x :=t&1 |
t

0
T1(s) ET2(s) x ds

and

(BtE) x :=&t&1 |
t

0
|

s

0
T1(u) ET2(u) x du ds

for E # B(X2 , X1) and x # X2 . If w1+w2�0, then [At], [Bt] satisfy condi-
tions (C1)�(C5), with e(t)=t&1, f (t)=t&;, 0<;�1, and .(t)=&1

2 t.
Hence Theorems 1 and 2 yield the following theorem.

Theorem 6. Suppose that w1+w2�1, and let 6 : N(2)�R(2) � N(2)
be the projection with R(6)=N(2) and N(6)=R(2), where the overbar
denotes the uniform operator closure. We have:

(i) For 0<;�1 and E # D(6)=N(2)�R(2), one has &t&1 � t
0 T1(s)

ET2(s) ds&6E&=O(t&;) (t � �) if and only if &*(*&2)&1 E&6E&=
O(*;) (* � 0+), if and only if K(*, D(6), N(2)�2(D(2) & R(2)))=O(*;)
(* � 0+). Moreover, in case ;=1, these conditions are equivalent to that
E # N(2)�[2(D(2) & R(2))]t

R(2) .

(ii) For 0<;�1 and F # 2(D(2) & R(2)) one has &t&1 � t
0 �s

0 T1(u)
FT2(u) du ds+(2 | R(2))

&1 F&=O(t&;) (t � �) if and only if &(*&2)&1 F+
(2 | R(2))

&1 F&=O(*;) (* � 0+), if and only if K(*, R(2), 2(D(2) &
R(2)))=O(*;) (* � 0+). Moreover, in case ;=1, these conditions are
equivalent to F # [2(D(2) & R(2))]t

R(2)
.

(iii) R(2) is not closed if and only if for every (some) 0<;<1 there
are F; , F $; # R(2) such that

"t&1 |
t

0
T1(s) F;T2(s) ds" {=O(t&;)

{(t&;)
(t � �)

and

&*(*&2)&1 F $;& {=O(*;)
{o(*;)

(* � 0+).

Remarks. Ergodic limits of S( } ) and approximate solutions of the
operator equation A1 E+EA2=F were studied in [19, 20], and their
optimal rates of convergence were discussed in [23].
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